FF1 Material

FF1 material is a high permeability Nickel-Zinc ferrite specially formulated for high inductance at low frequencies in broadband applications without having the dielectric constant of Manganese-Zinc ferrites. It can be used in broadband applications into the GHz region. It also features very high volume resistivity. FF1 is available in a variety of toroidal, multiaperture, bead cores, coilforms, and bobbins.

Parameter	Symbol	Unit	Standard Test Conditions	Value
Initial Permeability (Nominal)	µ,	_	B<0.1mT 10kHz 25°C	1500 ± 20%
Saturation Flux Density (typical)	B _{sat}	mT	H=1200 A/m =15 Oe 25°C, 100°C	230
Residual Flux Density (typical)	B _r	mT	H⇒0 (from near Saturation) 10kHz 25°C	175
Coercive force (typical)	H _c	A/m	B⇒0 (from near Saturation) 10kHz 25°C	30
Relative Loss Factor (maximum)	Tan 8/µ _i	10 ⁻⁶	B<0.1mT 100kHz 25°C	140
Curie Temperature (minimum)	T _c	°C	B<0.1mT 1kHz	95
Normalized Impedance	Z	Ω	100 MHz	_
Volume Resistivity (typical)	р	Ω-cm	1V/cm 25°C	5x 10 ⁶

Dynamic Magnetization (B-H) Loop

Initial Permeability vs. Temperature

Normalized Impedance vs. Frequency

Relative Loss Factor vs. Frequency

Complex Permeability vs. Frequency

