F19

Nickel-Zinc Ferrite
*Medium permeability *Low loss factors at low frequencies *High impedance at megahertz frequencies
100kHz - 1MHz (Low losses) 25MHz - 100MHz (High impedance)

Typical Applications: SMD suppression

Available core shapes: Ring cores, beads, sleeves, cable suppressors, SM beads.

MMG

Dynamic Magnetisation: Typical B-H Loops

Material Specification

Parameter	Symbol	Standard Condition of test	ns	Unit	F19
Initial Permeability (nominal)	-	B<0.1mT 10kHz	25°C	-	1000 ±20%
Saturation Flux Density (typical)	B _{sat}	H=796 A/m = 10 Oe	25°C	mT	260
Remanent Flux Density <i>(typical)</i>	B _r	H→ 0 (from near Saturation 10kHz) 25°C	mT	165
Coercivity (typical)	Н _с	B→ 0 (from near Saturation 10kHz) 25°C	A/m	53
Loss Factor (maximum)	$\frac{\tan\delta_{_{(r+e)}}}{\mu_i}$	B<0.10mT 50 25°C 1	00kHz 1MHz	10 ⁻⁶	130 350
Curie Temperature (minimum)	Θ _C	B<0.10mT 1	0kHz	°C	120
Temperature Factor	$\frac{\Delta \mu}{\mu_i^2 \cdot \Delta T}$	+25°C to +55°C B<0.10mT 1	0kHz	°C	3 to 6.5
Resistivity (typical)	ρ	1	V/cm 25°C	ohm- cm	10⁴

Normalised Impedance vs. Frequency

