F16

Δ

Material Type:	Nickel-Zinc Ferrite
Properties:	Low loss factors at high frequency
Frequency range:	500kHz-10MHz (Subject to application)
Typical Applications:	Aerial rods and tuned circuits.
vailable core shapes:	On request.

Special Grade Material Specification

Parameter	Symbol	Standard Cond of test	Unit	F16	
Initial Permeability (nominal)	-	B<0.1mT 10kHz	25°C	-	125 ±20%
Saturation Flux Density <i>(typical)</i>	B _{sat}	H=796 A/m = 10 Oe	25°C	mT	340
Remanent Flux Density <i>(typical)</i>	B _r	H→ 0 (from near Satura 10kHz	ation) 25°C	mT	260
Coercivity (typical)	H _c	B→ 0 (from near Satura 10kHz	ation) 25°C	A/m	200
Loss Factor (maximum)	$\frac{\tan \delta_{_{(r+e)}}}{\mu_{i}}$	B<0.10mT 25°c	1MHz 5MHz 10MHz	10 ⁻⁶	60 65 100
Curie Temperature (minimum)	$\Theta_{\rm C}$	B<0.10mT	10kHz	°C	270
Temperature Factor	$\frac{\Delta\mu}{{\mu_i}^2.\Delta T}$	+25°C to +55°C B<0.10mT	10kHz	°C	20 to 50
Resistivity (typical)	ρ		1 V/cm 25°C	ohm- cm	10⁵

Initial Permeability vs. Temperature

